我们的目标是在杂乱的家庭笼环境中跟踪和识别小鼠,作为对生物学研究的自动行为识别的前兆。这是一个非常具有挑战性的问题,因为(i)缺乏对每只鼠标的视觉特征,(ii)具有恒定遮挡的场景的紧密范围,使标准的视觉跟踪方法无法使用。然而,每个鼠标位置的粗略估计可从唯一的RFID植入物中获得,因此有可能最佳地将来自(弱)跟踪的信息与关于身份的粗略信息相结合。为了实现我们的目标,我们提出以下关键贡献:(a)将识别问题的制定作为分配问题(使用整数线性编程解决),(b)轨迹和RFID数据之间的亲和力的新概率模型。后者是模型的关键部分,因为它提供了对特定粗糙定位的物体检测的原则性概率处理。我们的方法在该识别问题上实现了77%的准确性,并且能够在隐藏动物时拒绝杂散的检测。
translated by 谷歌翻译
Generating realistic 3D worlds occupied by moving humans has many applications in games, architecture, and synthetic data creation. But generating such scenes is expensive and labor intensive. Recent work generates human poses and motions given a 3D scene. Here, we take the opposite approach and generate 3D indoor scenes given 3D human motion. Such motions can come from archival motion capture or from IMU sensors worn on the body, effectively turning human movement in a "scanner" of the 3D world. Intuitively, human movement indicates the free-space in a room and human contact indicates surfaces or objects that support activities such as sitting, lying or touching. We propose MIME (Mining Interaction and Movement to infer 3D Environments), which is a generative model of indoor scenes that produces furniture layouts that are consistent with the human movement. MIME uses an auto-regressive transformer architecture that takes the already generated objects in the scene as well as the human motion as input, and outputs the next plausible object. To train MIME, we build a dataset by populating the 3D FRONT scene dataset with 3D humans. Our experiments show that MIME produces more diverse and plausible 3D scenes than a recent generative scene method that does not know about human movement. Code and data will be available for research at https://mime.is.tue.mpg.de.
translated by 谷歌翻译
安全至关重要的应用中神经网络(NNS)的患病率的增加,要求采用证明安全行为的方法。本文提出了一种向后的可及性方法,以安全验证神经反馈循环(NFLS),即具有NN控制策略的闭环系统。尽管最近的作品集中在远程达到NFL的安全认证策略上,但落后性能比远期策略具有优势,尤其是在避免障碍的情况下。先前的工作已经开发了用于无NNS系统的向后可及性分析的技术,但是由于其激活功能的非线性,反馈回路中的NNS存在唯一的问题,并且由于NN模型通常不可逆转。为了克服这些挑战,我们使用现有的NN分析工具有效地找到了对反射(BP)集的过度评估,即NN控制策略将将系统驱动到给定目标集的状态集。我们介绍了用于计算以馈电NN表示的控制策略的线性和非线性系统的BP过度评估的框架,并提出了计算有效的策略。我们使用各种模型的数值结果来展示所提出的算法,包括6D系统的安全认证。
translated by 谷歌翻译
来自多个RGB摄像机的无标记人类运动捕获(MOCAP)是一个广泛研究的问题。现有方法要么需要校准相机,要么相对于静态摄像头校准它们,该摄像头是MOCAP系统的参考框架。每个捕获会话都必须先验完成校准步骤,这是一个乏味的过程,并且每当有意或意外移动相机时,都需要重新校准。在本文中,我们提出了一种MOCAP方法,该方法使用了多个静态和移动的外部未校准的RGB摄像机。我们方法的关键组成部分如下。首先,由于相机和受试者可以自由移动,因此我们选择接地平面作为常见参考,以代表身体和相机运动,与代表摄像机坐标中身体的现有方法不同。其次,我们了解相对于接地平面的短人类运动序列($ \ sim $ 1SEC)的概率分布,并利用它在摄像机和人类运动之间消除歧义。第三,我们将此分布用作一种新型的多阶段优化方法的运动,以适合SMPL人体模型,并且摄像机在图像上的人体关键点构成。最后,我们证明我们的方法可以在从航空摄像机到智能手机的各种数据集上使用。与使用静态摄像头的单眼人类MOCAP任务相比,它还提供了更准确的结果。我们的代码可在https://github.com/robot-ception-group/smartmocap上进行研究。
translated by 谷歌翻译
推断人类场景接触(HSC)是了解人类如何与周围环境相互作用的第一步。尽管检测2D人类对象的相互作用(HOI)和重建3D人姿势和形状(HPS)已经取得了重大进展,但单个图像的3D人习惯接触的推理仍然具有挑战性。现有的HSC检测方法仅考虑几种类型的预定义接触,通常将身体和场景降低到少数原语,甚至忽略了图像证据。为了预测单个图像的人类场景接触,我们从数据和算法的角度解决了上述局限性。我们捕获了一个名为“真实场景,互动,联系和人类”的新数据集。 Rich在4K分辨率上包含多视图室外/室内视频序列,使用无标记运动捕获,3D身体扫描和高分辨率3D场景扫描捕获的地面3D人体。 Rich的一个关键特征是它还包含身体上精确的顶点级接触标签。使用Rich,我们训练一个网络,该网络可预测单个RGB图像的密集车身场景接触。我们的主要见解是,接触中的区域总是被阻塞,因此网络需要能够探索整个图像以获取证据。我们使用变压器学习这种非本地关系,并提出新的身体场景接触变压器(BSTRO)。很少有方法探索3D接触;那些只专注于脚的人,将脚接触作为后处理步骤,或从身体姿势中推断出无需看现场的接触。据我们所知,BSTRO是直接从单个图像中直接估计3D身体场景接触的方法。我们证明,BSTRO的表现明显优于先前的艺术。代码和数据集可在https://rich.is.tue.mpg.de上获得。
translated by 谷歌翻译
虽然从图像中回归3D人类的方法迅速发展,但估计的身体形状通常不会捕获真正的人形状。这是有问题的,因为对于许多应用,准确的身体形状与姿势一样重要。身体形状准确性差姿势准确性的关键原因是缺乏数据。尽管人类可以标记2D关节,并且这些约束3D姿势,但“标记” 3D身体形状并不容易。由于配对的数据与图像和3D身体形状很少见,因此我们利用了两个信息来源:(1)我们收集了各种“时尚”模型的互联网图像,以及一系列的人体测量值; (2)我们为3D身体网眼和模型图像收集语言形状属性。综上所述,这些数据集提供了足够的约束来推断密集的3D形状。我们利用几种新型方法来利用人体测量和语言形状属性来训练称为Shapy的神经网络,从而从RGB图像中回归了3D人类的姿势和形状。我们在公共基准测试上评估shapy,但请注意,它们要么缺乏明显的身体形状变化,地面真实形状或衣服变化。因此,我们收集了一个新的数据集,用于评估3D人类形状估计,称为HBW,其中包含“野生人体”的照片,我们为其具有地面3D身体扫描。在这个新的基准测试中,Shapy在3D身体估计的任务上的最先进方法极大地胜过。这是第一次演示,即可以从易于观察的人体测量和语言形状属性中训练来自图像的3D体形回归。我们的模型和数据可在以下网址获得:shapy.is.tue.mpg.de
translated by 谷歌翻译
在监督机器学习的背景下,学习曲线描述了模型在看不见的数据上的性能如何与用于训练模型的样本数量有关。在本文中,我们介绍了植物图像的数据集,其中包括不同生长阶段的曼尼托巴省大草原共有的农作物和杂草的代表。我们通过Resnet体系结构确定该数据上的分类任务的学习曲线。我们的结果与以前的研究一致,并增加了以下证据:学习曲线受大规模,应用和模型的权力关系的约束。我们进一步研究标签噪声和可训练参数的减少如何影响该数据集的学习曲线。这两种效应都导致模型需要过多的较大训练集,以实现与没有这些效果的相同分类性能。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译